Mason Scholte and Jitte Waagen
ARCfieldLAB. Innovative sensor technologies and methodologies for archaeological fieldwork: network, knowledgebase, and dissemination
BACKGROUND
The field of archaeological remote sensing has in the past decade seen significant developments in terms of novel sensor technologies and applications. These innovations can be applied to improve and expedite the archaeological fieldwork process in terms of the documentation, visualisation, and monitoring of archaeological features in a non-invasive manner, both on land as well as underwater.
With this blogpost, the 4D Research Lab presents ARCfieldLAB, a brand-new research project with the aim of creating an inventory of the most important technological innovations of the last ten years in the field of archaeological remote sensing, and disseminating this knowledge to improve the quality of archaeological research in the Netherlands. The project concerns a wide-ranging audience, including academic researchers, students, professional archaeologists and other specialists in this field (i.e. commercial companies or municipal and governmental archaeological services), and volunteers in archaeology.
This project is set to run for two years, and is funded by E-RIHS. E-RIHS is the European Research Infrastructure for Heritage Science which supports research on heritage interpretation, preservation, documentation and management. The mission of E-RIHS is to deliver integrated access to expertise, data and technologies through a permanent scientific infrastructure for heritage research, to which ARCfieldLAB will add a national digital platform for innovative methods and techniques and a collaborative network aimed at sharing experiences and best practices.
A core consortium led by the 4DRL of institutions firmly embedded in the Dutch archaeological sector or in the field of archaeological remote sensing has been appointed and acts as a steering committee this project. It consists of representatives of the Rijksdienst voor Cultureel Erfgoed (RCE), Stichting Infrastructuur Kwaliteitsborging Bodembeheer (SIKB), as well as the private sector (as represented by the Vereniging Ondernemers in Archeologie (VOiA)) and experts from Leiden University (LEI), the Free University of Amsterdam (VU), and University of Amsterdam (UvA).
THE PROJECT
There are two main components which constitute ARCfieldLAB:
The first component is the collection and dissemination of knowledge on innovative sensor technologies which can be applied to archaeological fieldwork by a) creating an overview of these developments in the last decade and sharing this knowledge through a publicly-accessible online knowledge base of resources and best practices, and b) providing examples of successful applications of the novel technologies and methods by which their value and potential for the archaeological fieldwork process is illustrated.
The second component is the organisation of a number of expert meetings, in which the possibilities and added value of innovative sensor technologies are elucidated and space is provided for experience in the application of these techniques to be exchanged. To promote multi-disciplinary collaboration, participants in these meetings will come from various sectors: archaeological professionals and academics, both from Dutch and international contexts, as well as remote sensing outside of the archaeological field. Additionally, workshops will be hosted for the promotion and education of these techniques.
As part of this project, various case studies will take place. These case studies serve to expose and fill in existing gaps in the knowledge of archaeological remote sensing in The Netherlands and aid in the development of best practices. The potential of the technological innovations which have so far not seen wide application in Dutch archaeology (but possibly have seen use in other countries or other sectors) as well as the efficacy of combining multiple remote sensing data sources in one site will be tested.
EXAMPLE CASE STUDY: SIEGERSWOUDE
An example of a case study assessing the potential of a novel sensor technology in the context of Dutch archaeology is the use of drone-based thermal infrared remote sensing at the late medieval site of Siegerswoude, Friesland.
The theory behind thermography has previously been described in a previous blogpost, where it was used at the site of Halos in Greece. This pilot at Siegerswoude adds to a body of case studies which can be systematically compared to determine to what extent certain variables (e.g. soil composition, time of day, soil humidity, thermal properties of archaeological features) influence the outcome of an archaeological survey using drone-based thermography.
Historical sources associate the village of Siegerswoude, currently located on the meadow of a dairy farm, with a late-medieval grange from a regional Benedictine monastery situated approximately one kilometre west of the site. The site itself consists of at least five rectangular plots, evenly spaced along an axis and encircled by ditches.
Thermal imagery taken at the site revealed multiple traces which contrast with the background (marked A-E on the image) that have been identified as being archaeological in origin. The clearest of these is the rectangular ditch encircling the westernmost plot of land (A), visible on both the orthophoto as well as LiDAR data, which has a distinct thermal signature. On the northside of this feature, a double line is visible which is not present on the non-thermal data sources. Other traces included a rectangular trace in the centre of the western plot (B), long lines in SW-NE direction (C), and part of a ditch encircling the eastern plot (D) which continues into a similar double line feature as near (A). Test trenches have further validated these results, and provided insights into the use of this area: the ditches were used for draining the surrounding peat landscape, as well as for the extraction of loam.
One of the main takeaways from this survey, is the fact that thermography is capable of identifying archaeological features which are not visible on both orthophotos and LiDAR data of Siegerswoude. Furthermore, the noticeable differences in visibility of thermal signatures on the thermal imagery taken at different points throughout the day at Siegerswoude serves as a prime example of the importance of understanding the influence of variables on the results of these surveys.